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Solution of a,+ =[a:- V(fl)]+ in an arbitrary interval by the 
method of primitive propagators 
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Sir Frank Packer Theoretical Department, School of Physics, University of Sydney, Sydney, 
NSW 2006, Australia 

Received 6 May 1986, in final form 22 August 1986 

Abstract. A method of solving the initial value problem J ,+  = [ a ;  - V(n) ]+  in an arbitrary 
interval is presented, given auxiliary boundary conditions which induce a unique solution. 
Although the Green propagator for the problem may be impossible to find directly, progress 
is made by finding the propagator for the same evolution equation in a different interval 
and with simpler boundary conditions. This primitive propagator propagates the Green 
propagator for the actual problem forward from its initial value. The initial value is chosen 
outside the interval so as to satisfy the actual boundary conditions. Examples are presented. 

1. The equations and their solution 

We consider the evolution equation 

with the 'potential' V(R) given by 

1 d2p  
V(R) = - 7 

P dfl  
and p (Q)  real. Our aim is to solve (1) as an initial value problem in the interval [0, 13, 
with homogeneous boundary conditions at either end of the interval: 

d 
-P - ' 4 (R ,  7)'o V 7 > 0  at R = 0 ,  1. (3 )  aR 

Generalisation to any other finite interval is achieved by rescaling and translating. On 
substituting for V(R) in (1) from (2), we have 

so that, provided p ( 0 )  is sufficiently regular at R = 0, 1, boundary conditions (3) imply 
the integral conservation condition 
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The initial value problem is tackled by constructing the Green propagator 
G(R, fi; T ) ,  which solves the same problem with initial value 

G(R,  fi; O ) =  8 (R -0) 0, fi E [O, 11. ( 7 )  
The solution of (1) is then given by 

4 (R ,  T )  = lo' d f i  G(R,  fi; ~ ) d ( f i ,  0). (8) 

The crucial step is to continue the propagator G(R, fi; T )  beyond the interval [0, 11 
in R space. (The dummy variable fi is always taken within this interval, from (8).) 
The initial value G(R, fi; 0), which is of delta function form within the interval, is 
chosen outside it so as to satisfy boundary conditions (3). 

The first stage is to construct the primitive propagator G,(R, a; T ) ,  which has initial 
value G(R-fi) everywhere, not merely in [0, 11. We assume that V ( 0 )  is sufficiently 
regular for the eigenfunctions II, of [ - d2 /dRZ + V(R)] to be orthonormal and  complete 
in (-CO,CO): 

X I-, n,*(fl)&(R) = 8 , k .  

The primitive propagator is constructed from the eigenfunctions as 

G,(R, fi; T )  = 1 II ,(R)n)(fi)  exp(- A,T). (11) 

If  the eigenvalue spectrum includes a continuum, this must be included in (11). The 
eigenvalues Aj  are real and, moreover, non-negative; for on multiplying (9) by n,(n) 
and integrating by parts, we have 

It has been assumed that p(R) is sufficiently regular for the integrated term to 
vanish. Finally, we know by inspection of (3) and (5) that the zeroth eigenfunction is 

n,(R)aP(n) (13) 

The primitive propagator is used to propagate the initial value of the true propagator 
with eigenvalue zero. 

forwards in time: 

This superposition satisfies the evolution equation and the initial condition ( 7 ) .  
G ( y ,  5; 0) is now chosen outside [ O ,  13 to make it satisfy the boundary conditions (3): 

(15) 
a 
- p-'G(R, fi; T )  = 0 an V T > O  at R = 0 ,  1. 

Define the quantities 

a 
Ko,i(Y, 7 )  == p(fi)- 'G,(a, y ;  7 )  at R = 0, 1 (16) 



respectively, and 

g(y,  a) = G(y,  a; 0) - S ( y  -Cl). 
It follows from (14)-( 17) that 

From ( 7 ) ,  g(y,  fi) is zero in O<y < 1, ruling out the naive solution g(y ,  fi) = - S ( y  -a). 
The integral transforms are to be solved for g(y ,  a) at all values of y. Although there 
are two transforms (one for K O ,  one for K , ) ,  the problem is not automatically 
overdetermined; in fact we shall prove uniqueness of any solution found. 

The solution of (9) for G ( y ,  fi; 0) is then substituted into (14) and  the quadrature 
performed to give the propagator. 

2. Symmetry and uniqueness 

Let us take the Laplace transform with respect to time of the evolution equation, and  
define 

G(n, a; s) = d r  exp(-sr)G(Cl, a; 7 ) .  i: 
Then 

(-$+ v(n)+s G(n, a; s) = s(n-a) 1 n, a E [ O ,  11. (20) 

On integrating the identity 

(21) 

over y from 0 to 1, the L H S  simplifies using (20) to 

G(0 ,  a; s) - G(n, a; s )  (22)  
while the R H S  vanjshes as a consequence of boundary conditions (15). This confirms 
the symmetry of G and he?ce of G in R a?d a. A similar argument applied to two 
proposed distinct solutions Gl(y, 6; s) and G2(y, a; s) causes their difference to vanish, 
confirming uniqueness. 

3. Generalisations 

The method of solution set out above remains useful when the evolution equation is 
supplemented by different constraints from the boundary conditions (15). The primitive 
propagator is again used to propagate the initial value of the desired propagator 
forward in time. The initial value G(y, a; 0) is chosen by substituting (14) into the 
new constraints. Existence and  uniquness should be investigated first in such cases. 
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4. Examples 

To illustrate this procedure we consider first the simplest possible case: p ( n )  = 1, 
V ( n )  = 0, so that 

aG a2G 
a7 an2 - (n,a; 7) 

with boundary conditions 

V T > O  at R = 0 ,  1. (24) 
aG 
an -(fl,fi; 7)‘o 

The sum over all modes giving the primitive propagator in this case is continuous and 
can be integrated explicitly: 

The integral transforms (18) simplify to I-, dy y exp[ - y2/47]g(y, a) = - exp[ - a 2 / 4 7 ]  
X 

X 

dy(y - 1) eXp[- ( y  - 1)’/47]g(y, a) = (1 -a) eXp[ - (1 - fi)2/4T]. (28) 

In the first of these, define a new dummy variable of integration z by y = -a in 
y<O and y = &  in y>O,  to give 

I-. 
lox dz exp(-z/2r)[-g(-&, fi)+g(&, a)] = -a exp[- f i2 /4~l .  (29)  

This is a Laplace transform with conjugate variables z and ( 2 7 ) - ’ .  I t  is trivially inverted 
to give 

- g ( - a ,  fi) + g ( f i ,  a)  = - f i6(z  -in2, (30) 

- g ( - y , f i ) + g ( y , f i )  = - a 6 ( ; y q = P )  y z o .  (31)  

2 2 0 
1 2  or, putting z = zy  , 

Similarly, by putting ( y  - 1 )  = -a in y < 1 and ( y  - 1) =a in y > 1, we find from 
(28) that 

y 2 0 .  (32)  

These two equations, taken with the condition that g(y, fi) = 0 for y E [0,1], are to be 
solved for g. Leaving aside the delta functions on the RHS, they state that g(y,f i )  is 
even about y = 0 and y = 1. 

To find g, let y vary first between 0 and 1 in (31). There can be no contribution 
from the g(y, fi) term on the LHS, so the delta function must arise from the g (  - y ,  fi) 
term. Thus, sending y + -y, 

- g ( l  - y ,  a ) + g (  1 + y ,  fi) = (1 -fi)s[ty‘-t(l  --cl)*] 

g(y,.iZ) = 6 ( y + f i )  - l < y < O .  (33)  



Now vary y between 0 and 1 in (32). This gives, similarly, 

g(y, fi) = S(Y -@-a)) 1 < y < 2 .  (34) 

Next we vary y within [1,2] in (31) and (32). The information this yields, together 
with (33) and (34), allows us to find g(y, 6) in - 2 < y < - 1 and 2 < y < 3. The process 
is repeated to build up g outwards to y = *W. The result is 

3: 

G ( y ,  fi; 0) = g(y, fi)+ S(y -6) = 1 [6(y+2n -n)+ S(y  +2n +a)]. (35) 
n = - m  

This is depicted in figure 1. On substitution into (14), the propagator emerges as 

G(n,f i ;  T ) = ( ~ T T ) - ” *  (exp[-(S1-fi++n)*/4~] 
r 

n=-x 

+exp[-(fi+fi++n)‘/47]).  (36) 

The series is clearly convergent. Its terms satisfy the boundary conditions in pairs. 
Our solution for G(y, fi; 0) might conceivably have been found by using the ‘method 

of images’ between two parallel mirrors (for a related example of its use in the diffusion 
equation, see [ 11). This is inconceivable in more difficult problems; the next most easy 
model problem is for p ( n )  = a + bfi ,  for which V ( n )  is still zero and the primitive 
propagator still (26). The equations which generalise (31) and (32) are 

+ b ( l  - f i ) S ( ~ ~ ’ - i ( I  -a)’) y > o .  (38) 
Constants of integration are chosen by demanding the solution reduce, as 6 + 0, to 
that of (31) and (32). We do  not examine this problem further, since it is a limiting 
case of the next. 

The propagator has also been found for constant potential, trivially scaled to 
V ( 0 )  = 1. From (2), p(R) is a linear combination of exp(*fi). Although the primitive 
propagator is only exp( - T )  times its value in the problem above (expression (26)), 
and the integral transforms are again Laplace’s, the p-dependent boundary conditions 

e n >  

-6 -4 - 2  0 2 4 6 
Y 

Figure 1. G ( y ,  a; 0). 
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render the problem extremely complicated. The initial value G(y ,  6; 0) is a mixture 
of delta functions, step functions, polynomials and exponentials and even to quote 
the propagator G(R, 6; T )  (let alone the working) takes several pages. The analysis 
is given in [2,3], and the result summarised in [3], equations (145)-( 151). Simplification 
of this takes place when p ( R )  =exp(l2) or exp(-R),  rather than a general linear 
combination. For exp( - a), the result is [2,3] 

G(R, f i ;  T ) = ( ~ T T ) - '  ' exp ( - r )  exp[-(R+fi-22m)','4~] 
x 

m = - x  

X 

+ ( ~ T T ) - " ?  exp(- T )  1 exp[ - (a - fi - 2 m ) ? / 4 ~ ]  
V I  = - r 

The first two summations correspond to delta functions and the last two to step functions 
in the initial value g(R,  fi; 0). The problem V ( R )  =0,  p = a + bn, is retrieved by 
restoring the constant potential V, on dimensional grounds and then shrinking it to zero. 

References [2-41 set the problem in the physical context of electron distribution 
thermalisation by means of contact with a heat bath. 

5. Alternative forms of the solution 

The boundary conditions (15) ensure self-adjointness of the problem, so that there 
should exist a complete orthogonal set of eigenfunctions in [0, I]. Once this eigen- 
problem is solved, the propagator can be constructed from its solutions in the usual 
way. The values of the eigenvalue parameter A are not necessarily equal to the 
eigenvalues of the primitive problem. The resulting form of the solution is most useful 
at large times, in contrast with the expression found by the method above. 

For the problem p ( Q )  = 1, normalised eigenfunctions are 1, cos( n r R )  and the 
eigenvalue spectrum is discrete. (This is in contrast with the continuum found in 
( -CO, a) for the primitive problem.) The propagator is therefore 

I 

G(R,  a;  T )  = 1 + 2  1 cos( ~ T R )  cos( n ~ f i )  exp( - n ' r ' 7 ) .  (40) 

This series is convergent, reduces to s(0-a) in  [0, 13 for T = O ,  and by uniqueness 
must equal (361, at least within [0, I]. It is characteristic of a Fourier expansion in an 
interval of width two, not one; extra eigenvalues are situated midway between those 
naively expected. 

,I - I 

It is easy to confirm that (40) satisfies the requirement 

This breaks down should the eigenproblem be sufficiently irregular. For example, if 



d o  not change with time. There is no reason why & ( 0 , 0 )  should be such that they 
take the value corresponding to & = p ( 0 ) .  Both the eigenproblem and (41) then fail, 
although the image method still works. 

The two forms (36) and  (40) are also related by the following transformation. The 
Fourier coefficients for expansion of a delta function in an interval of width p all 
equal p - ’ .  Since the expansion is periodic it must represent a sequence of delta 
functions, so that 

x X 

1 S ( z  - m p )  p - ’  e x p ( 2 ~ i m z / p )  V real z; p>O. (43) 
m = --x m = -x 

On multiplying this by a function F ( z )  and integrating, the LHS becomes a sum of 
equally spaced samples of F, and the RHS of F, its Fourier transform, with inverse 
spacing. With appropriate choice of F, this transformation (the Poisson summation 
formula) relates the two forms of the propagator in the present example; in fact it 
proves them equal everywhere, not just in [ O ,  13. It also relates the two forms of the 
propagator for the model problem V ( 0 )  = 1 [4]. 

6. Conclusion 

The method of solution presented, and its generalisations, significantly widen the 
classes of linear problems which can be tackled. Although no claim for rigour has 
been made, any prospective solution can always be tested by direct a posteriori 
substitution into the governing equations. 

Acknowledgment 

I thank the School of Physics, University of Sydney, for a Professor Harry Messel 
Research Fellowship. 

References 

[ 11 Mathews J a n d  Walker R L 1970 Marhemarrcal Meihods of fhysrcs (Menlo Park, CA Benjamin J pp 242-5 
[2] Garrett  A J M 1986 J.  Hasma fhys .  36 151 
[3] Garrett  A J M 1986b Phys. Rep. 134 195 
[4]  Garrett  A J M 1986 J.  PIasma Phys. 36 407 


